
Principles of Chemistry

Errata

We always strive to make our textbooks as accurate as possible, but sadly, errors are a reality. We very much appreciate friends who report errata that are not included in this document!

Please send new errata to info@centripetalpress.com

Last revised: August 31, 2021

Principles of Chemistry (2016)

Chapter 1 Exercises

10.d. The answer in kelvins is $255.37\overline{2}$.

Chapter 2 Exercises

33c. 2.91×10^{22} atoms

Exam 2, #6: Answer should be 60.052 g/mol

Chapter 3 Exercises

20i. neodymium

23. No: [Rn]7s²5f ¹⁴

 $33c 2.91 \times 10^{22}$

38. Units in the answer should be cm³.

46e. 1300.05 bar

Chapter 4

p. 104 The opening of the first paragraph should read, "The first 92 elements...are found in nature. Elements 93–118 have been synthesized in laboratories..."

Chapter 4 Exercises

10. The problem statement should refer to cesium (Cs). Answer: Mg < Na < Ba < Cs

Chapter 5 Exercises

20a The Be—F bond is ionic

22. The molar mass of CaCO₃ is 100.087, giving a result of 1.8051×10^{24} .

Chapter 7 Exercises

14i. reaction products should be LiI(aq) and K(s)

20. The question should say that the reaction takes place in excess *carbon monoxide*.

Chapter 9

14b. $4.20 \times 10^2 \text{ kg}$

Chapter 10

- 34. The first answer is 3.46 m
- 46. 8.50 atm

Chapter 11 Exercises

- 4g. The answer is diprotic
- 21. Add the following note to the answers given in the text: These answers all show the formation of carbonic acid, H_2CO_3 . This acid is unstable and immediately breaks down to CO_2 and water. Thus, each equation could be shown as: ...+ $CO_2 + H_2O$.
- 25. The first two sentences of the question should read: According to the activity series of metals (Table 7.2), copper does not react with sulfuric acid. However, if the acid is hot enough and concentrated enough, copper reacts with H₂SO₄ in a single-replacement reaction.

28g. basic

Chapter 12 Exercises

For exercise 2, the following descriptions should accompany the equations in the answer key.

- a. Not a redox reaction.
- b. Cl is reduced; it is the oxidizing agent. O is oxidized; it is the reducing agent.
- c. S is reduced; it is the oxidizing agent. Br is oxidized; it is the reducing agent.
- d. Not a redox reaction.
- e. Cl is reduced; it is the oxidizing agent. I is oxidized; it is the reducing agent.
- f. N is reduced; it is the oxidizing agent. S is oxidized; it is the reducing agent.

For exercise 7, the following descriptions should accompany the equations in the answer key.

- a. oxidizing agent: Fe; reducing agent: S b. oxidizing agent: Cl; reducing agent: I
- c. oxidizing agent: Mn; reducing agent: C
- d. oxidizing agent: Cl; reducing agent: O
- e. oxidizing agent: N; reducing agent: Al
- f. oxidizing agent: Mn; reducing agent: Cl
- g. oxidizing agent: N; reducing agent: S
- h. oxidizing agent: Mn; reducing agent: Br

Digital Resources

Exam 2

Fall Semester Exam

- 1d. The compound should be Cl₂O. The answer given is for this compound.
- 4. Our given solution is correct except for the final result, which should be 1.549×10^{-19} J.
- 10. The molecular mass of propane used in our solution is incorrect. It should be 44.096 g/mol, giving a result of 8.194×10^{25} carbon atoms.
- 16.b. iron(III) oxide
- 20. Correct answer is $Mg < Ca < Sr^{2+} < Sr < Ba^{2+}$

Spring Semester Exam

7b. The ionic equation should have $2Ag^{+}(aq)$ on both sides (not $2Ag^{2+}(aq)$)

Principles of Chemistry Solutions Manual

Chapter 3 Exercises

46e. 1300.05 bar

Chapter 5 Exercises

12 o. N₂O₄

Chapter 7

19b.

$$750 \text{ mg Al(OH)}_{3} \cdot \frac{1 \text{ g}}{1000 \text{ mg}} \cdot \frac{\text{mol}}{78.0034 \text{ g}} = 0.00961 \text{ mol Al(OH)}_{3}$$

$$0.00961 \text{ mol Al(OH)}_{3} \cdot \frac{3 \text{ mol HCl}}{1 \text{ mol Al(OH)}_{3}} = 0.0288 \text{ mol HCl}$$

$$19a.$$

Rounding this result to 2 sig digs gives 0.029 mol HCl.

750 mg Al(OH)₃ ·
$$\frac{1 \text{ g}}{1000 \text{ mg}}$$
 · $\frac{\text{mol}}{78.0034 \text{ g}}$ = 0.00961 mol Al(OH)₃
0.00961 mol Al(OH)₃ · $\frac{3 \text{ mol H}_2\text{O}}{1 \text{ mol Al(OH)}_3}$ = 0.0288 mol H₂O
0.0288 mol H₂O · $\frac{18.02 \text{ g}}{\text{mol}}$ = 0.5198 g H₂O

After the 7-19b solution, write: Rounding this result to 2 sig digs gives 0.52 g H_2O .

3